Computer Science Technical Report Decision Tree Function Approximation in Reinforcement Learning

نویسندگان

  • Larry D. Pyeatt
  • Adele E. Howe
چکیده

We present a decision tree based approach to function approximation in reinforcement learning. We compare our approach with table lookup and a neural network function approximator on three problems: the well known mountain car and pole balance problems as well as a simulated automobile race car. We find that the decision tree can provide better learning performance than the neural network function approximation and can solve large problems that are infeasible using table lookup.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer Science Technical Report Approximating a Policy Can be Easier Than Approximating a Value Function

Value functions can speed the learning of a solution to Markov Decision Problems by providing a prediction of reinforcement against which received reinforcement is compared. Once the learned values relatively reect the optimal ordering of actions, further learning is not necessary. In fact, further learning can lead to the disruption of the optimal policy if the value function is implemented wi...

متن کامل

Reinforcement Learning with Decision Trees

We present a decision tree based approach to function approximation in reinforcement learning. We compare our approach with table lookup and a neural network function approximator on three problems: the well known mountain car and pole balance problems as well as a simulated automobile race car. We find that the decision tree can provide better learning performance than the neural network funct...

متن کامل

Decision Tree Function Approximation in Reinforcement Learning

We present a decision tree based approach to function approximation in reinforcement learning. We compare our approach with table lookup and a neural network function approximator on three problems: the well known mountain car and pole balance problems as well as a simulated automobile race car. We find that the decision tree can provide better learning performance than the neural network funct...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998